Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 129

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Background and understanding on ALPS treated water discharge to the sea

Terasaka, Yuta; Iimoto, Takeshi*; Saso, Michitaka*; Fujita, Reiko*

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 66(4), p.203 - 207, 2024/04

no abstracts in English

JAEA Reports

Environmental performance data in "2021 Environmental Report"

Facilities Preservation Management Section, Safety Administration Department

JAEA-Review 2023-035, 218 Pages, 2024/03

JAEA-Review-2023-035.pdf:8.47MB

In September 2022, Japan Atomic Energy Agency (JAEA) published the 2021 Environmental Report concerning the activities of FY 2021 under "Act on the Promotion of Business Activities with Environmental Consideration by Specified Corporations, etc., by Facilitating Access to Environmental Information, and Other Measures". This report has been edited to show detailed environmental performance data in FY 2021 as the base of the 2021 Environmental Report. This report would not only ensure traceability of the data in order to enhance the reliability of the environmental report, but also make useful measures for promoting activities of environmental considerations in JAEA.

Journal Articles

Dependency of the source term estimation method for radionuclides released into the atmosphere on the available environmental monitoring data and its applicability to real-time source term estimation

Terada, Hiroaki; Nagai, Haruyasu; Kadowaki, Masanao; Tsuzuki, Katsunori

Journal of Nuclear Science and Technology, 60(8), p.980 - 1001, 2023/08

 Times Cited Count:4 Percentile:97.05(Nuclear Science & Technology)

It is essential to establish a method for reconstructing the source term and spatiotemporal distribution of radionuclides released into the atmosphere due to a nuclear accident for emergency countermeasures. We examined the dependency of a source term estimation method based on Bayesian inference using atmospheric dispersion simulation and environmental monitoring data on the availability of various monitoring data. Additionally, we examined the applicability of this method to a real-time estimation conducted immediately after an accident. A sensitivity analysis of the estimated source term during the Fukushima Daiichi Nuclear Power Station (FDNPS) accident for combinations of various monitoring data indicated that using monitoring data with a high temporal and spatial resolution and the concurrent use of air concentration and surface deposition data is effective for accurate estimation. A real-time source term estimation experiment assuming the situation of monitoring data acquisition during the FDNPS accident revealed that this method could provide the necessary source term for grasping the overview of surface contamination in the early phase and evaluating the approximate accident scale. If the immediate online acquisition of monitoring data and regular operation of an atmospheric dispersion simulation are established, this method can provide the source term in near-real time.

JAEA Reports

Consideration on roles and relationship between observations/measurements and model predictions for environmental consequence assessments for nuclear facilities

Togawa, Orihiko; Okura, Takehisa; Kimura, Masanori

JAEA-Review 2022-049, 76 Pages, 2023/01

JAEA-Review-2022-049.pdf:3.74MB

Before construction and after operation of nuclear facilities, environmental consequence assessments are conducted for normal operation and an emergency. These assessments mainly aim at confirming safety for the public around the facilities and producing relief for them. Environmental consequence assessments are carried out using observations/ measurements by environmental monitoring and/or model predictions by calculation models, sometimes using either of which and at other times using both them, according to the situations and necessities. First, this report investigates methods, roles, merits/demerits and relationship between observations/measurements and model predictions which are used for environmental consequence assessments of nuclear facilities, especially holding up a spent nuclear fuel reprocessing plant at Rokkasho, Aomori as an example. Next, it explains representative examples of utilization of data on observations/measurements and results on model predictions, and considers points of attention at using them. Finally, the report describes future direction, for example, improvements of observations/measurements and model predictions, and fusion of both them.

JAEA Reports

The Laboratory Operation Based on ISO/IEC 17025; Radioactivity analysis of environmental samples by germanium semiconductor detectors

Urushidate, Tadayuki*; Yoda, Tomoyuki; Otani, Shuichi*; Yamaguchi, Toshio*; Kunii, Nobuaki*; Kuriki, Kazuki*; Fujiwara, Kenso; Niizato, Tadafumi; Kitamura, Akihiro; Iijima, Kazuki

JAEA-Review 2022-023, 8 Pages, 2022/09

JAEA-Review-2022-023.pdf:1.19MB

After the accident of the Fukushima Daiichi Nuclear Power Station, the Japan Atomic Energy Agency has newly set up a laboratory in Fukushima and started measuring radioactivity concentrations of environmental samples. In October 2015, Fukushima Radiation Measurement Group has been accredited the ISO/IEC 17025 standard by the Japan Accreditation Board (JAB) as a testing laboratory for radioactivity analysis ($$^{134}$$Cs, $$^{137}$$Cs) based on Gamma-ray spectrometry with germanium semiconductor detectors. The laboratory has measured approximately 60,000 of various environmental samples at the end of March 2022. The laboratory quality control and measurement techniques have been accredited by regular surveillance of JAB. In September 2019, the laboratory renewed accreditation as a testing laboratory for radioactivity analysis.

JAEA Reports

Environmental performance data in "Environmental report 2021"

Safety and Environmental Management Section, Safety and Nuclear Security Administration Department

JAEA-Review 2022-013, 210 Pages, 2022/07

JAEA-Review-2022-013.pdf:6.68MB

In September, 2021 Japan Atomic Energy Agency (JAEA) published the Environmental Report 2021 concerning the activities of FY 2020 under "Law Concerning the Promotion of Business Activities with Environmental Consideration by Specified Corporations, etc., by Facilitating Access to Environmental Information, and Other Measures". This report has been edited to show detailed environmental performance data in FY 2020 as the base of the Environmental Report 2021. This report would not only ensure traceability of the data in order to enhance the reliability of the environmental report, but also make useful measures for promoting activities of environmental considerations in JAEA.

Journal Articles

Novel $$^{90}$$Sr analysis of environmental samples by ion-laser interaction mass spectrometry

Honda, Maki; Martschini, M.*; Marchhart, O.*; Priller, A.*; Steier, P.*; Golser, R.*; Sato, Tetsuya; Tsukada, Kazuaki; Sakaguchi, Aya*

Analytical Methods, 14(28), p.2732 - 2738, 2022/07

 Times Cited Count:2 Percentile:43.32(Chemistry, Analytical)

The sensitive $$^{90}$$Sr analysis with accelerator mass spectrometry (AMS) was developed for the advances of environmental radiology. One advantage of AMS is the ability to analyze various environmental samples with $$^{90}$$Sr/$$^{88}$$Sr atomic ratios of 10$$^{-14}$$ in a simple chemical separation. Three different IAEA samples with known $$^{90}$$Sr concentrations (moss-soil, animal bone, Syrian soil: 1 g each) were analyzed to assess the validity of the chemical separation and the AMS measurement. The $$^{90}$$Sr measurements were conducted on the AMS system combined with the Ion Laser InterAction MasSpectrometry (ILIAMS) setup at the University of Vienna, which has excellent isobaric separation performance. The isobaric interference of $$^{90}$$Zr in the $$^{90}$$Sr AMS was first removed by chemical separation. The separation factor of Zr in two-step column chromatography with Sr resin and anion exchange resin was 10$$^{6}$$. The $$^{90}$$Zr remaining in the sample was removed by ILIAMS effectively. This simple chemical separation achieved a limit of detection $$<$$ 0.1 mBq in the $$^{90}$$Sr AMS, which is lower than typical $$beta$$-ray detection. The agreement between AMS measurements and nominal values for the $$^{90}$$Sr concentrations of IAEA samples indicated that the new highly-sensitive $$^{90}$$Sr analysis in the environmental samples with AMS is reliable even for high matrix samples of soil and bone.

JAEA Reports

Study of corrosion and degradation of the objects in the nuclear reactor by microorganisms (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Keio University*

JAEA-Review 2021-048, 181 Pages, 2022/01

JAEA-Review-2021-048.pdf:14.5MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Study of corrosion and degradation of the objects in the nuclear reactor by microorganisms" conducted in FY2019 and FY2020. Since the final year of this proposal was FY2020, the results for two fiscal years were summarized. The purpose of the study is to obtain knowledge related to microorganisms that will be useful in the decommissioning process of 1F. Therefore, we clarified the current conditions of the microbial community inhabiting the power plant and its premises. Environmental samples were taken from several sites such as, topsoil from the south of the plant site boundary (south of the treated water tanks), seabed soil and its above water near the plant, surface water 3km offshore …

JAEA Reports

Environmental performance data in "Environmental report 2020"

Safety and Environmental Management Section, Safety and Nuclear Security Administration Department

JAEA-Review 2021-005, 209 Pages, 2021/11

JAEA-Review-2021-005.pdf:6.92MB

In September, 2020 Japan Atomic Energy Agency (JAEA) published the Environmental Report 2020 concerning the activities of FY 2019 under "Law Concerning the Promotion of Business Activities with Environmental Consideration by Specified Corporations, etc., by Facilitating Access to Environmental Information, and Other Measures". This report has been edited to show detailed environmental performance data in FY 2019 as the base of the Environmental Report 2020. This report would not only ensure traceability of the data in order to enhance the reliability of the environmental report, but also make useful measures for promoting activities of environmental considerations in JAEA.

Journal Articles

The Effect and effectiveness of decontaminating a pond in a residential area of Fukushima

Katengeza, E. W.*; Ochi, Kotaro; Sanada, Yukihisa; Iimoto, Takeshi*; Yoshinaga, Shinji*

Health Physics, 121(1), p.48 - 57, 2021/07

 Times Cited Count:1 Percentile:15.7(Environmental Sciences)

Special reconstruction and revitalization bases were designated in Fukushima's difficult-to-return zones by the Japanese government as targets of intensive decontamination to drastically lower air dose rates and enable residents to return. A pond amidst residences of one of these bases was targeted for decontamination and this study aimed at evaluating the effect and effectiveness of the decontamination by decontamination factor, air dose rate reduction factor, and the additional annual effective dose to residents. Air dose rates were measured in-situ with KURAMMA-II while soil core samples were collected and measured for radioactivity in the laboratory by gamma spectrometry. Lower decontamination factors were observed for more deeply distributed radiocesium soil profiles whereas areas covered with gravel demonstrated the largest reduction in air dose rates. Decontamination effectively lowered the radiocesium inventory and air dose rates by 51% and 37-91% respectively. Moreover, the additional annual effective dose to the public changed from 1.7$$pm$$0.79 mSv to 1.2$$pm$$0.57 mSv because of decontamination representing a dose aversion of 29%. These findings demonstrate how decontaminating ponds in residential areas can help to further lower the external exposure.

Journal Articles

Iodine-129 in the Tokai Reprocessing Plant and the environment

Nakano, Masanao

Hoken Butsuri (Internet), 56(1), p.17 - 25, 2021/03

The Tokai Reprocessing Plant is the first reprocessing plant in Japan which started hot test in 1977, and had reprocessed 1140 tons of spent nuclear fuel by May 2007. The gaseous and liquid radioactive wastes has been discharged to the environment. Since iodine-129 ($$^{129}$$I) is one of the most important nuclides for environmental impact assessment. Therefore, $$^{129}$$I in the exhaust and effluent has been controlled, and a precise analysis method of $$^{129}$$I in the environmental samples was developed, and the concentration of 129I in the environment was investigated. This report presents an overview of these activities. Not limited to $$^{129}$$I on reprocessing facilities, it is essential for nuclear operators to reduce the amount released to the environment in the spirit of ALARA, and to continuously develop the further upgrading environmental monitoring methods and evaluation methods in order to foster a sense of safety and security among residents living in the vicinity of the facilities.

JAEA Reports

Study of corrosion and degradation of the objects in the nuclear reactor by microorganisms (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Keio University*

JAEA-Review 2020-047, 63 Pages, 2021/01

JAEA-Review-2020-047.pdf:3.85MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2019. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Study of corrosion and degradation of the objects in the nuclear reactor by microorganisms" conducted in FY2019. The purpose of the study is to obtain knowledge related to microorganisms that will be useful in the decommissioning process of the Fukushima Daiichi Nuclear Power Station. For this reason, the current conditions of the microbial community inhabiting the power plant and its premises will be clarified. In the first research year, we obtained environmental samples such as soils from the south of the boundary of the plant, seabed soils near the plant, and surface water 3 km offshore from the plant, and successfully prepared their microbial genomic DNAs.

JAEA Reports

Environmental performance data in annual report "Japan Atomic Energy Agency 2019"

Safety and Environmental Management Section, Safety and Nuclear Security Administration Department

JAEA-Review 2020-019, 196 Pages, 2020/11

JAEA-Review-2020-019.pdf:6.21MB

We have prepared Annual Report "Japan Atomic Energy Agency 2019" as a means for comprehensively reporting on the activities of the Japan Atomic Energy Agency. In September, 2019 Japan Atomic Energy Agency published results of environmental activity as a part of Annual Report "Japan Atomic Energy Agency 2019" concerning the activities of FY 2018 under "Law Concerning the Promotion of Business Activities with Environmental Consideration by Specified Corporations, etc., by Facilitating Access to Environmental Information, and Other Measures". This report has been edited to show detailed environmental performance data in FY 2018 as the base of "Annual Report Japan Atomic Energy Agency 2019" and its additional information's. This report would not only ensure traceability of the data in order to enhance the reliability of the environmental report, but also make useful measures for promotion of environment-conscious activities in JAEA.

Journal Articles

Simulation analysis of the Compton-to-peak method for quantifying radiocesium deposition quantities

Malins, A.; Ochi, Kotaro; Machida, Masahiko; Sanada, Yukihisa

Proceedings of Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo 2020 (SNA + MC 2020), p.147 - 154, 2020/10

Journal Articles

A Knowledge-sharing activity on the environmental radiation monitoring results affected by the Fukushima-Daiichi Nuclear Power Plant Accident at Tokai-Oarai area in Ibaraki Prefecture

Nakano, Masanao; Hosomi, Kenji; Nishimura, Shusaku; Matsubara, Natsumi; Okura, Takehisa; Kuramochi, Akihiko; Kawasaki, Masatsugu; Takeuchi, Erina; Fujii, Yutaka*; Jinno, Tsukasa*; et al.

Hoken Butsuri (Internet), 55(2), p.102 - 109, 2020/06

After the Fukushima-Daiichi Nuclear Power Station (1F) Accident in March 2011, the increase was significantly observed in a part of the result of the environmental radiation monitoring in Ibaraki prefecture. "The review meeting of the environmental effect from 1F accident" was established to discuss technically the fluctuation of monitoring data. The review meeting collected the monitoring data from the four nuclear operators, and discussed a fluctuating trend, $$^{134}$$Cs/$$^{137}$$Cs activity ratio, and so on. In this report, the results of the dose rate and $$^{137}$$Cs in fallout, surface soil, flatfish and seabed sediment are introduced. Also the problem solving in the review meeting is introduced.

Journal Articles

Temporal change in radiological environments on land after the Fukushima Daiichi Nuclear Power Plant accident

Saito, Kimiaki; Mikami, Satoshi; Ando, Masaki; Matsuda, Norihiro; Kinase, Sakae; Tsuda, Shuichi; Sato, Tetsuro*; Seki, Akiyuki; Sanada, Yukihisa; Wainwright-Murakami, Haruko*; et al.

Journal of Radiation Protection and Research, 44(4), p.128 - 148, 2019/12

Journal Articles

Intercomparison of numerical atmospheric dispersion prediction models for emergency response to emissions of radionuclides with limited source information in the Fukushima Dai-ichi Nuclear Power Plant accident

Iwasaki, Toshiki*; Sekiyama, Tsuyoshi*; Nakajima, Teruyuki*; Watanabe, Akira*; Suzuki, Yasushi*; Kondo, Hiroaki*; Morino, Yu*; Terada, Hiroaki; Nagai, Haruyasu; Takigawa, Masayuki*; et al.

Atmospheric Environment, 214, p.116830_1 - 116830_11, 2019/10

 Times Cited Count:6 Percentile:25.62(Environmental Sciences)

The utilization of numerical atmospheric dispersion prediction (NDP) models for accidental discharge of radioactive substances was recommended by a working group of the Meteorological Society of Japan. This paper is to validate the recommendation through NDP model intercomparison in the accidental release from the Fukushima Dai-ichi Nuclear Power Plant in 2011. Emission intensity is assumed to be constant during the whole forecast period for the worst-case scenario unless time sequence of emission is available. We expect to utilize forecasts of surface air contaminations for preventions of inhalations of radioactive substances, and column-integrated amounts for mitigation of radiation exposure associated with wet deposition. Although NDP forecasts have ensemble spread, they commonly figure out relative risk in space and time. They are of great benefit to disseminating effective warnings to public without failure. The multi-model ensemble technique may be effective to improve the reliability.

Journal Articles

7.2.3 Towards implementation of Fukushima environmental remediation

Miyahara, Kaname; Kawase, Keiichi

Genshiryoku No Ima To Ashita, p.159 - 167, 2019/03

This manuscript overviews lessons learned from decontamination pilot projects towards implementation of regional remediation after the environmental contamination due to the Fukushima Daiichi Nuclear Power Plant Accidents.

JAEA Reports

Progress report on Nuclear Safety Research Center (JFY 2015 - 2017)

Nuclear Safety Research Center, Sector of Nuclear Safety Research and Emergency Preparedness

JAEA-Review 2018-022, 201 Pages, 2019/01

JAEA-Review-2018-022.pdf:20.61MB

Nuclear Safety Research Center (NSRC), Sector of Nuclear Safety Research and Emergency Preparedness, Japan Atomic Energy Agency (JAEA) is conducting technical support to nuclear safety regulation and safety research based on the Mid-Long Term Target determined by Japanese government. This report summarizes the research structure of NSRC and the cooperative research activities with domestic and international organizations as well as the nuclear safety research activities and results in the period from JFY 2015 to 2017 on the nine research fields in NSRC; (1) severe accident analysis, (2) radiation risk analysis, (3) safety of nuclear fuels in light water reactors (LWRs), (4) thermohydraulic behavior under severe accident in LWRs, (5) materials degradation and structural integrity, (6) safety of nuclear fuel cycle facilities, (7) safety management on criticality, (8) safety of radioactive waste management, and (9) nuclear safeguards.

Journal Articles

Estimation of environmental releases of radioactive materials

Chino, Masamichi*; Nagai, Haruyasu

Environmental Contamination from the Fukushima Nuclear Disaster; Dispersion, Monitoring, Mitigation and Lessons Learned, p.50 - 61, 2019/00

 Times Cited Count:8 Percentile:82.45(Environmental Sciences)

Temporal variations in the amount of radionuclides released into the atmosphere during the Fukushima Daiichi Nuclear Power Station accident and their atmospheric dispersion are essential to evaluate the environmental impacts and resultant radiological doses to the public. We have estimated the atmospheric releases during the accident by comparing measurements with calculations by atmospheric deposition model. UNSCEAR compared several estimated source terms and used our source term for estimating levels of radioactive material in the terrestrial environment and doses to the public. To improve our source term, we recently made detailed source term estimation by using additional monitoring data and WSPEEDI including new deposition scheme.

129 (Records 1-20 displayed on this page)